
1

UIUC ACM SIGGraph
Parashar Krishnamachari

Development Team
Shanon Drone, Parashar Krishnamachari, Dmitry Lapan, Josh Michaels,

Don Schmidt, Phil Smith.
Artists / Modelers

Michael Bach, Nasri Hajj

Abstract

Throughout the history of computer graphics, the holy grail has been photorealism. While
we accept that it is numerically impossible, the idea is that a reasonably good approximation is
achievable such that we can trick the human eye. Over the years, methods have progressed from
Lambertian shading to Phong Shading, to Radiosity, and the more recent work on the various Monte
Carlo methods for global illumination. But even more recently, there has been study in the opposite
direction from photorealistic rendering. In short, non-photorealistic rendering treats computer graphics
as a medium for art. Thus, we try to develop means by which to render a scene in a stylized artistic
fashion.

Project aEmber was an effort to render 3-d scenery with the appearance of being hand-
painted. aEmber has gone through 2 major revisions in its implementation since its original conception.
The final algorithm is based on the one described by Meier[1] designed for use in Disney’s Tarzan.
Code and executables for aEmber 3 Final are available at
http://www.acm.uiuc.edu/siggraph/

Among the concerns for the development of a real-time painterly rendering engine, were
speed, interframe coherency, screen coverage, quality, and artistic control. Each such concern was
answered by various approaches over the course of its revisions and ultimately, we reached what we
believed to be a reasonable algorithm for real-time display of painted 3-d scenery.

CR Categories
I.3.3 [Computer Graphics] Picture/Image Generation – Display Algorithms; J.5

[Computer Applications] Arts and Humanities – Fine Arts.

Keywords
Non-photorealistic rendering, painterly rendering, real-time, interactive.

http://www.acm.uiuc.edu/siggraph/

2

Introduction

Prior to actually creating a 3-d painting,
an ordinary 3-d scene is made in whatever tool
the artist finds suitable. Currently, aEmber only
supports loading of Wavefront .OBJ scene data
in addition to its native .AE3D files.

Properties of the scene including object
materials and lights are taken to wit. However,
aEmber does ignore texture data in general.
Vertex painted color information is stored in the
source file as vertex color info rather than texture
reference info, and therefore, will be preserved
in the aEmber view window. Skybox textures
will be ignored. However, aEmber has its own
skybox support, so the images used in the
original scene skybox can be placed in the
“envmap” subdirectory for the aEmber viewer
to look up.

aEmber uses a unique hierarchical scene
graph description that allows a user to have
control over the scene at various depths. In the
process of developing a painted 3d scene, we
use material properties for a given object to
define color and lighting characteristics.
Brushstrokes, however, must be assigned by the
artist. The hierarchical scene graph allows an
artist to generalize by assigning a brush shape at
any particular level of the hierarchy. The entire
scene can use a single brushstroke shape or one
can assign different strokes to different objects.
It is even possible to assign specific brushstrokes
to individual points. Moreover, lower-level
hierarchical assignments automatically override
those at higher level. For instance, we can assign
a particular brushstroke to an object, but also
assign a different brush to a specific polygon or
a specific point within the object.

At the highest level, there is the scene
itself, which has a default brush. Beneath that,
are objects, which can have their own separate
brush assignments.

Further one step down from objects,
there are polygons (generally triangles). The
triangles are tessellated to varying degrees

(which is another aspect controllable by the user
at various hierarchy levels) to result in a point
cloud. It is at these points that a brushstroke is
actually rendered.

As the rendering pipeline recurses down
the tree, we set the current brush to the scene
default. As the loop works deeper own the tree,
the brush setting is changed if a new brush
assignment is found anywhere along the line.
When a point/brush has been drawn, we reset
the brushstroke to its prior setting based on the
triangle to which it belongs. While this is a
recursive process, the actual implementation is
not recursive, else a stack overflow is inevitable.
We simply simulate a recursion by making use
of the fact that the hierarchy of the scene graph
is limited in its depth.

Brush definitions themselves are small
grayscale TGA image files. The grayscale data
is treated as alpha-channel information for the
renderer so that natural translucence of
brushstrokes can be simulated in texture space.
These files sit in a brushes subdirectory and are
referenced by number in the scene data.

Brush images, in general need only be
simplified iterations of strokes as there are other
variables controllable by the user/artist.

Brushstroke size and direction are
variables that are defined in much the same way
as brush choice. In addition, the artist can enable
mild jittering to be applied on top of the given
definitions (jittering is also applicable to color).
In the final version, there was also the option of
allowing contour-controlled stroke directions so
that the brushstrokes might appear to follow the
curvature of an object in the scene. Direction
definitions that are contour-controlled simply
aligned the polygon renderings of brushes to the
planes in which the existing polygon lied
(alignment by vertex normal).

Interframe Coherency

The main advantage of 3-d scenery as
opposed to 2-d images is the freedom of the

3

viewer to move about in the scene as if it were
actual space. The fact that we are rendering 3-
d scenery in a painted fashion implies that a
viewer would wish to move about in the scene
and that the painted view would be dynamic.
There exist several 2-d image filtering
approaches that can make an individual frame
of animation appear painted, but the caveat of
these approaches is that the painting is not
coherent from frame to frame.

Maintaining inter-frame coherency was
one of the major concerns in the first version of
aEmber. The locations of brushstrokes was not
decided based on the image, but by the 3d
scenery. We would simply tessellate each triangle
to a cloud of points at which textured quads of
the brushstrokes were drawn. Making use of
the consumer 3d hardware to render was key in
maintaining the speed such that we could render
painted scenery at multiple frames per second.
With compiler optimizations, aEmber v1 was
able to maintain 14 fps on an average scene of
25,000 brushstrokes (not necessarily all
brushstrokes are within the FOV at once) on a
PII-450 machine with a 3dfx Voodoo3 video
chipset. Unfortunate side effects of this approach
included the perspective-induced brush scaling.
A hand-painted portrait generally has only a few
scales of stroke sizes that do not scale quite so
regularly. In the images rendered by aEmber
version 1, brushstrokes on distant objects were
smaller than those of nearby objects, and the
scaling of those strokes progressed in a true-to-
perspective fashion. Not only is this not a faithful
representation of paintings, but it also decreases
overall coverage of the screen, so there were
always “holes” in the paintings.

While orthographic projections could
cure this issue of brushstroke scaling, it creates
a different problem in the fact that the perspective
of the scene itself will be skewed. The resulting
image is not very convincingly 3-dimensional.
While the viewer is free to move about in the
scene, the perception of vanishing points and
solid objects is no longer present.

Screen Coverage

aEmber v1 had issues with coverage of
the screen. There were areas where brushstrokes
did not exist as well as areas within the model
itself where brushstrokes did not completely fill
the model in screen space. If we were to increase
the size of the brushstrokes, or if we were to
increase the tessellation depth that decided stroke
placement, that could solve the problem.
However, both approaches put a strain on the
hardware. Brushstrokes are rendered as alpha-
blended textured polygons so as to harbor some
natural translucence. Alpha-blending of textures
over several layers is a major drain even on
modern 3d hardware. Increasing the area over
which that drain occurs does not help either.
Increasing the tessellation depth is equally if not
more draining as it introduces more points to
transform and more brushstrokes to render.

Figure 1
Figure 1 above shows a screenshot from

aEmber v1. We can see that the brushstrokes
are scaling very smoothly due to perspective.
Also, the coverage of the screen is not very
complete. Filling up the screen had to be faked
by using a background texture or by using a
skybox.

In aEmber v2, we applied brushstrokes
based on a rendered image of the scene. The
scene was first rendered using ordinary D3D
Retained mode lighting. A sampling of pixels
from the rendered image was used to generate
color information for the brushes. The result
filled the screen completely, and also performed

4

well. However, this method lacked the frame-
to-frame coherency of aEmber v1. Frames
adjacent in the time axis would often be so
radically varying that it is no better than using a
simple image filtering approach to stylized
rendering.

Flexibility

Another problem with aEmber v2 is that
by using the image alone, we have no information
about the objects. Color information does not
signify an object because multiple objects can
have the same color. If every object had a
discernibly unique color, we wouldn’t be
concerned. However, with lighting taken into
account, there’s also the possibility of highlights
all of the same color and so on. Without
information on the objects, we end up losing
flexibility.

Figure 2
Figure 2 is a screenshot from aEmber v2.

We can see that brushstrokes cover the entire
screen. We can also see that the brushstrokes
are relatively uniform in size and direction, albeit
that those variables are lightly jittered. Color is
also lightly jittered to produce some more natural
variations. However, that jittering also implies
that more random variation will be applied for
subsequent frames. Thus, the same view will
not be the same for the next frame, unless the
program kept track of a brush state tied to every
sampled pixel. This would be effective in keeping

the incoherency down, but it would waste and
fragment a great deal of memory. Moreover,
there would be a need to keep track of pixel
motion in the instance that the user moved the
camera viewpoint.

Most significant, however, is the fact that
all the brushes are the same stroke. Because we
cannot discern object identification directly using
only pixelmaps, we are forced to limit the scene
to a single brushstroke. In a purely software-
rendered engine, we could have used the alpha
channel of the pixmap to hold object id numbers
since the alpha channel does not affect 2d blits.
However, in a hardware-accelerated engine, the
alpha channels will not be written. Moreover, if
we held id information in the alpha channel while
rendering the brushes, they will be treated as
actual transparency values.

This necessity to fill the screen with the
same brushstroke defeats the purpose of our
hierarchical structure which allowed the user to
have total brushstroke choice control within a
painting. Even if we could discern and identify
objects, we would still have to go further and
identify individual points.

Compromise

aEmber v3 uses the final approach, which
works out as a compromise between v1 and v2’s
algorithm. In aEmber v3, we still sampled data
from the pixelmap. However, the locations of
sampling were chosen based on the model.

In v3, we continued to use the tree
structure that allowed a user to have tight control
over brushstrokes down to a single point. The
points, again, were generated via a simple mesh
tessellation. The tessellation takes place using
the 2-d projected XY coordinates of the
triangles. And those locations are sampled for
color information. Because the sampling takes
place at the mesh level, we can keep track of
object ownership. Every sampled pixel will be
within the triangle, which is a mesh member of
the particular object being rendered at that time.

5

The resulting animation will have some
slight lack of coherency due to the fact that the
brushstroke orientations are calculated at render
time. Brushstrokes can be either billboard
textures or textured polygons that are aligned
by surface normal. Slight errors will cause some
variation from frame to frame. Also, the
tessellated points will be very similar in Z-value,
so the low-accuracy Z-buffers present in
consumer-grade accelerators will cause some
brushstrokes to pop back and forth with respect
to other strokes.

However, this slight loss of coherency is
acceptable. We also get full coverage of the
screen so long as there is 3d scenery to cover
the whole screen. aEmber 3 also supports
skybox textures in the case that the model space
is not enough to fill the screen.

Figure 3 at right is a screenshot from the
final version of aEmber. In this case, we only
have objects and no skybox textures. At
SIGGraph 2000, we were provided with nVidia
Quadro-powered workstations. The objects are
tessellated to a depth that reflects that kind of a
setup. On ordinary home hardware (GeForce2
MX), the same scene renders as fast as 45 fps.
To illustrate the point of our hierarchical

Figure 3

structure, which allowed individual polygon/
point control over brush styles, the original .OBJ
file had the objects grouped together. Thus, the
whole scene is stored in memory as being a single
object. Because of this, brushes had to be

assigned as deep as individual polygons and even
points in some cases.

With more complex scenes, like the
“Grass Huts” scene, there were several more
brushstrokes to render, and so framerates around
21 fps are achievable on the same hardware.

Conclusion

With the final version of aEmber, we
reached what we believe to be a reasonable
compromise for the sake of interactive frame
rates. While frame-to-frame coherency was
slightly sacrificed, the quality of the renderings
is significantly greater than we achieved in
aEmber v1.

Many of the coherency issues can be
hidden using animated brushstrokes and similar
effects. Popping back and forth will still occur,
but it becomes harder to pay attention to such a
detail. On professional workstation-grade
hardware, it has been shown that the coherency
problems exist, but are not as severe.
Supposedly, the only remaining coherency
variables are those related to floating point error
in calculating brushstroke locations and
orientations. However, we cannot get such high
framerates out of professional-grade hardware,
as it is not designed for the purpose of drawing
hundreds of textured alpha-blended triangle
strips.

We also tend to lose some coherency due
to the fact that brushes lie outside the contours
of the object. We felt that this was necessary
because of the fact that real brushstrokes will
have such features. A painting of an impressionist
style will make a point of visible brushstrokes,
and more often than not, they will not “stay
within the lines.” However, when a point from
the tessellated mesh is along one of the edges, it
could become obscured if the viewpoint is
rotated, and thus, the brushstroke will not be
rendered. If that brushstroke contained pixels
that lie outside the range of the object contours,
we could see parts of those “fuzzy” edges vanish.

6

With current hardware, it is possible to
re-implement aEmber’s method through pixel
and/or vertex shaders. While no such technolo-
gies existed at the time of aEmber’s original
implementation, it could serve to achieve far
higher framerates, and quite possibly better qual-
ity and coherency. The only concern is as to
whether the instruction limit on most pixel
shaders allows enough complexity to achieve the
desired effect. As for aEmber itself, we feel it
has reached the desired results as far as quality
and speed with the third version.

References

[1] Barbara J. Meier. Painterly Rendering for Animation. In SIGGRAPH 96 Conference
Proceedings, Pages 477-484, August 1996.

aEmber v1 screenshot. “Van Gogh” scene

7

aEmber v2 screenshot. “Fields of Elysium” scene

Rendering stages. Upper Left : The initial model of the UIUC Engineering Quad. Rendered with GL
lighting. Lower Left : North Quad scene has been tessellated and the point clouds are rendered directly

in our editing/preview tools. Upper right : aEmber v1 screenshot. Shown is the Beckman Institute
model from the same scene data. Lower right : aEmber v2 screenshot for comparison. Notably,

brushstroke style is common throughout the scene.

8

aEmber v3 screenshot. “Fruits” scene.

aEmber v3 screenshot. “Grass Huts” scene.

